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The fundamental assumptions of the traditional deterministic linear models are those of continuous and
differentiability of physical quantities involved in drug release processes. However, these assumptions are in
reality contrary to the evidence given by the complexity of the drug release process. Thus, we will consider
that, at mesoscopic scale, the drug release mechanisms are based on the assumption that the drug particle
movements take place on continuous, but non-differentiable curves (fractal curves), for which a Weibull type
equation results. In this approach, analyzing some experimental data, information on the drug release
mechanism and system complexity are obtained.
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To use in investigations only Euclidean geometry, which
describes objects with integer dimensions, restricts the
possibility of adequate description of real, natural and
artificial objects, because it leaves numerous objects with
non-integer dimensions, like plants, galaxies, population
patterns, crystal growth, beyond the scope of
consideration. The properties of such objects can be
described using fractal geometry [1,2]. In this category
have been included, also, natural and synthetic polymers
as fractal objects, whose main structural unit, the
macromolecular coil, is known to be a fractal, and whose
behaviour manifests fractal characteristics at mesoscopic
scale [3-8].

In this paper, we will consider that a process in which
polymer fractality manifests is drug release from polymer
microparticles. The arguments that allow us to make this
assumption are presented next.

Analyzing the experimental drug release kinetics results
that these structures (drug + polymer microparticle) are
thermodynamically unstable, evolving to an equilibrium
state. Depending on specific parameters of each structure
(the drugs type, incorporated drug dose(s), types and
amounts of excipients, preparation technique,
environmental conditions during drug release as well as
geometry and dimensions of drug delivery system), each
will “find” its own evolution path, consequence of the
internal collective processes. Thermodynamically
nonequilibrium processes result in the formation of
mesoscopic fractal structures [5, 9], so, also, the released
drug trajectories are continuous and non-differentiable
curves (fractal curves) [1, 10-12].

But, in spite of the complexity of the phenomena involved
in drug release mechanism (water penetration into the
device, drug dissolution, phase transitions, drug and/or
polymer degradation, polymer swelling, physical drug-
excipient interactions, chemical reactions between drug
and polymer and/or water), the mathematical expressions
used in pharmaceutics to describe the kinetics of drug

release from a variety of structures are rather simple,
namely power laws type: Higuchi, Ritger-Peppas, Peppas-
Sahlin, Alfrey [13]. Knowing the fact that the structure
whose dynamics is ruled by power laws manifests critical
self-structuring [14], property specific for fractals, we can
affirm that these structures (drug loaded polymer matrix)
manifests a mesoscopic fractal behaviour.

Thus, the question of whether or not the fractal analysis
should be used to describe the structure and evolution of
such a structure, drug loaded polymer matrix, is not a matter
of researcher’s choice, but is dictated by the requirements
of a correct approach of this issue.

In this context, we will analyze this process in the fractal
approach considering that the complexity of the physical
processes is replaced by fractality and it is no longer
necessary to use the whole classical “arsenal” of
quantities from the standard physics (differentiable
physics); the physical systems will behave as a special
interaction-less “fluid”. In this way, we introduce the fractal
approximation of motion in the study of this complex
physical systems dynamics, considering that the drug
trajectories are continuous, but non-differentiable curves,
named fractal curves. The physical model which treats
the interactions in the previously mentioned manner is the
Scale Relativity Theory (SRT) [10-12]. In this theory, we
shall obtain a generalized “diffusion” type equation  that
describes better than the power laws the entire
experimental release curves [15], eliminating thus the
criticisms based on the lack of a kinetic basis for its use
and the non-physical nature of its parameters [16].

This paper is structurated as follows: in Section 2, using
the fractal approximation of motion,  a generalized
“diffusion” type equation, which implies Fickian and non-
Fickian drug release mechanisms, is obtained.
Experimental results, which validates our model, are
presented in Section 3. In Section 4, the conclusions are
given.
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Experimental part
Theoretical considerations

Taking into account the complexity of the phenomena
involved in drug release processes from polymer
microparticles, we shall assume that this processes occurs
on continuous, but non-differentiable curves (fractal
curves).

If such an assumption works, then, according to [11,
12], the dynamics of the fractal released drug concentration
field at mesoscopic scale are described by the equation:

(1)

where   is the complex speed field

(2)

V is the standard classical speed, which is independent of
scale resolution (dt), whiles the imaginary part, U, is a new
quantity arising from non-differentiability, which is
resolution-dependent. D  is a structure coefficient,
characteristic to the fractal-non-fractal transition, scale
resolution and fractal dimension DF dependent [1, 10-12].

This means that at any point of a release curve (released
drug trajectories) the local temporal term, ∂, Q, the non-

linearly ”convective” term,   and the dissipative one,

Δ Q, make their balance.
Separating the real and imaginary parts in equation (1),

we obtain

          (3a, b)

and, moreover, by adding these two equations, a generalized
“diffusion” type law results:

        (4)

Generalized “diffusion” type equation
This “diffusion”  law results from (4) on the following

assumptions:
- the “diffusion” path are fractal curves with fractal

dimension DF ≠ 2;
- the time resolution, δt, is identified with the differential

element dt, i.e. the substitution principle can be applied
also, in this case (see Appendix);

- the movements at differentiable and non-differentiable
scales are “synchronous”
(the same drug release mechanisms at fractal scale
manifests, also, at differentiable scale), i.e. V=U.

Then, the equation (4) can be written:

   (5)

In one-dimensional case, applying the variable
separation method [17]

   (6)

with the standard initial and boundary conditions:

 (7)

implies:

 (8a,b)

where L is a system characteristic length, l a separation
constant, dependent on diffusion order m.

Accepting the viability of the substitution principle [11,
12], from (8a, b), through integration, results:

(9)

Taking into consideration some results of the fractional
integro-differential calculus [18, 19], (9) becomes:

(10a, b)

Moreover, (10a,b) can be written under the form:

(11)

The relative variation of non-differentiable released drug
concentrations, time dependent, is defined as:

        (12)

where Q and Q∞ are cumulative amounts of drug released
at time t and infinite time. From (11) and (12) results:

(13)

equation similar to the well-known Weibull relation:

(14)

a and b representing constant specific for each system
that are defined by:

           (15a, b)
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We observe that both constants, a and b, are functions
of the fractal dimension of the curves on which drug release
mechanism take place, dimension that is a measure of
the complexity and nonlinear dynamics of the system.
Moreover, constant a depends, also, on the “diffusion” order
m.

In figures 1, we present the theoretical dependence (13)
on the variables time t and fractal dimension DF, for a given
diffusion order m (fig. 1a) and on the variables time t and
order diffusion m, for a given fractal dimension DF (fig. 1b).

Let’s note that the fractal processes [1, 10-12, 20-22]
given by the equation (4) with DF ≠ 2 are known as
“anomalous diffusion” (sub-diffusion for DF < 2 and super-
diffusion for DF > 2).

Particular cases
For different values of a and/or b parameters, the

following cases can be distinguished.
i) For b=1, that implies DF = 2, we can affirm that the

release is compatible with first-order release, whereas the
concentration gradient in the dissolution medium drives
the rate of release. Also, this condition implies the next
considerations:

-the diffusion paths are the fractal curves of Peano’s
type. This means that the fractal dimension of the fractal
curves is DF = 2. Moreover,  the average values (A.19 from
Appendix) are defined through Wiener’s stochastic
processes [1, 10-12, 20-22], i.e.:

(16)

- the movements at differentiable and non-differentiable
scales are synchronous, i.e. V=U;

- the structure coefficient D is identified with the
diffusion coefficient, i.e. D≡D .
and the “diffusion” law can be written in the form:

     (17)

- If in the relation (14) we consider the restriction on
time t<<1/ab (that will allow short time approximations
for exponential function), with a<1, this can be reduced to
a well-known law in drug release studies, the Peppas law
[15]:

        (18)

where

     (19a,b)

Depending on the values of parameter b, i.e. the fractal
dimension DF  of the released drug fractal curves (released
drug trajectories), one can identify the release mechanism
of drug from different kind of polymer matrixes, release
environments, drug type [23]. In such context, for b=1/2  it
is a Fickian release type mechanism (Higuchi’s law), while
for 15.0 〈〈b  manifests a non-Fickian release type
mechanism [15].

Experimental considerations
In this paragraph we will present some experimental

results, for polymer microparticles, followed by some
observations, in the context of this new theoretical
approach.

Gelatin and poly(vinyl alcohol) (GEL-PVA) microparticles
cross-linked with glutaraldehide (GA), for samples prepared
by using different amount of cross-linking agent ( 2, 6, 8,
10% - the sample code indicate the crosslinking amount:
for example, GA2 represents a sample with 2%
crosslinking amount), loaded with  chloramphenicol, were
studied (details regarding materials and experimental
protocol can be found in [24]).

The experimental points of release kinetics are
represented in figure 2.

Results and discussions
All the above drug carriers represents polymer micro

particles, but with different structure characteristics, as a
result of different experimental parameters. Despite this,
they have similar behaviour in time, from a qualitative point
of view. In order to analyze quantitatively, we must take
into account the loaded drug amount that is direct
proportional with the released drug amount, issue that is
not the subject of this paper.

Fig. 1(a, b).  Theoretical dependence
of (13) on the variables time t and
fractal dimension DF, for a given
diffusion order m (a) and on the

variables time t and order diffusion m,
for a given fractal dimension DF (b)

Fig. 2. Chloramphenicol release kinetics from GEL-PVA
microparticles
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We analyzed these results fitting the experimental data
with a Weibull type law, demonstrated in the above
paragraph. As a result, we obtained parameters a and b,
the correlation factors and release kinetics fractal
dimension for each of the samples that indicates some
information on the drug release mechanisms at
mesoscopic scale (table 1).

The first observation is that the correlation coefficient
between the experimental curves and Weibull fitted curve
are very good, better that than for Peppas curve (data not
shown in this paper), this allowing us to affirm that this
entire release process can be described better by the
Weibull type law instead of Peppas law, showing the wide
applicability of a Weibull type law. For illustration, we plot
in figure3 the experimental and Weibull type curves.

Also, the values for n, from the Peppas law, namely no
value of 0.5, indicate that in all these cases the diffusion
mechanism is a non-Fickian one, the diffusion not being
the predominant phenomena, others having, also, an
important contribution: physical interactions between
drug, polymer micro particles and release environment,
chemical reactions and drug/polymer degradation.

Consequently, this complexity of the phenomena
determines, also, naturally, a complex trajectory for the
drug particles. It is known that a measure of the trajectory
complexity is the fractal dimension of the trajectory, named,
in this case, the fractal dimension of the release curve.
This reasoning is confirmed by the fractal dimension values,
determined according to (15b). The values between 1 and
3 are in agreement with the values usually accepted for
fractal process [25]; the higher values denotes the fact
that, either fractal dimension must be redefined as function
of structure “classes”, or the drug release process is
complex, involving many freedom degrees in the phase
space [26, 27]. Another observation that can be made
based on this results is that the samples with DF < 2
manifests a “sub-diffusion” and, in the other, with DF > 2,
the release process is of “super-diffusion” (table 1),
classification in concordance with the experimental
observation that these samples exhibit a ”faster” diffusion,

with a higher diffusion rate, with respect to the other
samples [28-30].

Conclusions
In this paper, we have replaced the complexity of the

physical processes that determines drug release from
polymer micro particles with fractality, case for which it is
no longer necessary to use the whole classical “arsenal”
of quantities from the standard physics (differentiable
physics). In this way, we introduce the fractal
approximation of motion in the study of this complex
physical and chemical system dynamics. Using fractional
calculus, the fractal “diffusion” equation give rise to a
Weibull type relation, a statistical distribution function of
wide applicability, inclusively in drug release studies. In
this approach, we consider all the simultaneous
phenomena involved, equivalent with complexity and
fractality, offering, in this way, a physical base to this
equation and for its parameters. They are functions of
fractal dimension of the curves on which drug release
mechanism takes place, dimension that is a measure of
the complexity and nonlinear dynamics of the system,
dependent on the diffusion order.

This approach is confirmed as viability by some
experimental results, from whose analyze results that
experimental curves can be fitted, with very good
correlation factors, better that that for the power type laws,
by a Weibull type relation and that the fractal dimension of
a drug release curve offers information on the drug release
mechanisms.
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